Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38587317

RESUMEN

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n-dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumours, and WRN inhibitors are in development. Here, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth In vitro and In vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA-repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair (MMR) alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft (PDX) models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic-lethal targeting of WRN in MSI cancer and tools to dissect WRN biology.

2.
Bioorg Med Chem ; 100: 117618, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309201

RESUMEN

The virally encoded 3C-like protease (3CLpro) is a well-validated drug target for the inhibition of coronaviruses including Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Most inhibitors of 3CLpro are peptidomimetic, with a γ-lactam in place of Gln at the P1 position of the pseudopeptide chain. An effort was pursued to identify a viable alternative to the γ-lactam P1 mimetic which would improve physicochemical properties while retaining affinity for the target. Discovery of a 2-tetrahydrofuran as a suitable P1 replacement that is a potent enzymatic inhibitor of 3CLpro in SARS-CoV-2 virus is described herein.


Asunto(s)
Antivirales , Inhibidores de Proteasa de Coronavirus , Furanos , Antivirales/química , Antivirales/farmacología , Lactamas , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2 , Furanos/química , Inhibidores de Proteasa de Coronavirus/química
3.
Cell Chem Biol ; 29(6): 947-957.e8, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35202587

RESUMEN

In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.


Asunto(s)
Fibrosis Quística , Furina , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Furina/antagonistas & inhibidores , Humanos , Depuración Mucociliar
4.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32109056

RESUMEN

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno/efectos de los fármacos , Diterpenos de Tipo Clerodano/farmacología , Epítopos/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Sitio Alostérico , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/metabolismo , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Epítopos/química , Células HeLa , Humanos , Ratones , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Proteolisis/efectos de los fármacos
5.
Protein Expr Purif ; 164: 105455, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31306746

RESUMEN

Wolf-Hirschhorn Syndrome Candidate 1 (WHSC1; also known as NSD2) is a SET domain-containing histone lysine methyltransferase. A chromosomal translocation occurs in 15-20% of multiple myeloma patients and is associated with increased production of WHSC1 and poor clinical prognosis. To define the substrate requirements of NSD2, we established a platform for the large-scale production of recombinant polynucleosomes, based on authentic human histone proteins, expressed in E. coli, and complexed with linearized DNA. A brief survey of methyltransferases whose substrate requirements are recorded in the literature yielded expected results, lending credence to the fitness of our approach. This platform was readily 'codified' with respect to both position and extent of methylation at histone 3 lysines 18 and 36 and led to the conclusion that the most readily discernible activity of NSD2 in contact with a nucleosome substrate is dimethylation of histone 3 lysine 36. We further explored reaction mechanism, and conclude a processive, rather than distributive mechanism best describes the interaction of NSD2 with intact nucleosome substrates. The methods developed feature scale and flexibility and are suited to thorough pharmaceutical-scale drug discovery campaigns.


Asunto(s)
Escherichia coli/genética , N-Metiltransferasa de Histona-Lisina/genética , Nucleosomas/genética , Proteínas Represoras/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleosomas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Especificidad por Sustrato
7.
Nature ; 564(7736): 439-443, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30405246

RESUMEN

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Diseño de Fármacos , Proteínas de la Membrana/agonistas , Animales , Bencimidazoles/administración & dosificación , Bencimidazoles/uso terapéutico , Humanos , Ligandos , Proteínas de la Membrana/inmunología , Ratones , Modelos Moleculares , Nucleótidos Cíclicos/metabolismo
8.
J Am Chem Soc ; 138(21): 6699-702, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27183271

RESUMEN

Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone H3 lysine 36 (H3K36)-specific methyltransferase enzyme that is overexpressed in a number of cancers, including multiple myeloma. NSD2 binds to S-adenosyl-l-methionine (SAM) and nucleosome substrates to catalyze the transfer of a methyl group from SAM to the ε-amino group of histone H3K36. Equilibrium binding isotope effects and density functional theory calculations indicate that the SAM methyl group is sterically constrained in complex with NSD2, and that this steric constraint is released upon nucleosome binding. Together, these results show that nucleosome binding to NSD2 induces a significant change in the chemical environment of enzyme-bound SAM.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , Modelos Teóricos , Nucleosomas/química , Proteínas Represoras/química , S-Adenosilmetionina/química , Sitios de Unión , Biología Computacional , Humanos , Metilación , Modelos Moleculares , Unión Proteica
9.
Proc Natl Acad Sci U S A ; 113(5): 1197-201, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787850

RESUMEN

Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Represoras/metabolismo , Catálisis , Células HeLa , N-Metiltransferasa de Histona-Lisina/química , Humanos , Metilación , Modelos Moleculares , Proteínas Represoras/química
10.
Cancer Metab ; 1(1): 19, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24280423

RESUMEN

BACKGROUND: Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA. METHODS: High throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment. RESULTS: 3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu398 cells. CONCLUSIONS: Rapid chemical inhibition of LDHA by these quinoline 3-sulfonamids led to profound metabolic alterations and impaired cell survival in carcinoma cells making it a compelling strategy for treating solid tumors that rely on aerobic glycolysis for survival.

11.
Biochemistry ; 51(38): 7551-68, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22928782

RESUMEN

We examined the cathepsin C-catalyzed hydrolysis of dipeptide substrates of the form Yaa-Xaa-AMC, using steady-state and pre-steady-state kinetic methods. The substrates group into three kinetic profiles based upon the broad range observed for k(cat)/K(a) and k(cat) values, pre-steady-state time courses, and solvent kinetic isotope effects (sKIEs). The dipeptide substrate Gly-Arg-AMC displayed large values for k(cat)/K(a) (1.6 ± 0.09 µM(-1) s(-1)) and k(cat) (255 ± 6 s(-1)), an inverse sKIE on k(cat)/K(a) ((D)(k(cat)/K(a)) = 0.6 ± 0.15), a modest, normal sKIE on k(cat) ((D)k(cat) = 1.6 ± 0.2), and immeasurable pre-steady-state kinetics, indicating an extremely fast pre-steady-state rate (>400 s(-1)). (Errors on fitted values are omitted in the text for clarity but may be found in Table 2.) These results conformed to a kinetic model where the acylation (k(ac)) and deacylation (k(dac)) half-reactions are very fast and similar in value. The second substrate type, Gly-Tyr-AMC and Ser-Tyr-AMC, the latter the subject of a comprehensive kinetic study (Schneck et al. (2008) Biochemistry 47, 8697-8710), were found to be less active substrates compared to Gly-Arg-AMC, with respective k(cat)/K(a) values of 0.49 ± 0.07 µM(-1 )s(-1) and 5.3 ± 0.5 µM(-1 )s(-1), and k(cat) values of 28 ± 1 s(-1) and 25 ± 0.5 s(-1). Solvent kinetic isotope effects for Ser-Tyr-AMC were found to be inverse for k(cat)/K(a) ((D)(k(cat)/K(a)) = 0.74 ± 0.05) and normal for k(cat) ((D)k(cat) = 2.3 ± 0.1) but unlike Gly-Arg-AMC, pre-steady-state kinetics of Gly-Tyr-AMC and Ser-Tyr-AMC were measurable and characterized by a single-exponential burst, with fast transient rates (490 s(-1) and 390 s(-1), respectively), from which it was determined that k(ac) ≫ k(dac) ∼ k(cat). The third substrate type, Gly-Ile-AMC, gave very low values of k(cat)/K(a) (0.0015 ± 0.0001 µM(-1) s(-1)) and k(cat) (0.33 ± 0.02 s(-1)), no sKIEs, ((D)(k(cat)/K(a)) = 1.05 ± 0.5 and (D)k(cat) = 1.06 ± 0.4), and pre-steady-state kinetics exhibited a discernible, but negligible, transient phase. For this third class of substrate, kinetic modeling was consistent with a mechanism in which k(dac) > k(ac) ∼ k(cat), and for which an isotope-insensitive step in the acylation half-reaction is the slowest. The combined results of these studies suggested that the identity of the amino acid at the P(1) position of the substrate is the main determinant of catalysis. On the basis of these kinetic data, together with crystallographic studies of substrate analogues and molecular dynamics analysis with models of acyl-enzyme intermediates, we present a catalytic model derived from the relative rates of the acylation vs deacylation half-reactions of cathepsin C. The chemical steps of catalysis are proposed to be dependent upon the conformational freedom of the amino acid substituents for optimal alignment for thiolation (acylation) or hydrolysis (deacylation). These studies suggest ideas for inhibitor design for papain-family cysteine proteases and strategies to progress drug discovery for other classes of disease-relevant cysteine proteases.


Asunto(s)
Aminoácidos/química , Catepsina C/química , Dipéptidos/química , Catálisis , Catepsina C/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Especificidad por Sustrato
12.
Anal Biochem ; 415(1): 84-6, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21459076

RESUMEN

Epigenetics is an area of increasing interest for drug discovery, driving the need for assays that use nucleosome substrates. Our studies showed that SUV39H1, a histone lysine methyltransferase, and Dnmt3b/Dnmt3L, a DNA methyltransferase, both exhibited approximately five times more activity on monomer nucleosomes than on DNA-core-trimmed nucleosomes in a scintillation proximity assay (SPA). The methyltransferases recognize and have a preference for nucleosomes with longer DNA strands. Our findings suggest that the use of monomer nucleosomes as substrates using SPA technology could lead to more robust screening assays and potentially more specific small molecule inhibitors of epigenetic enzymes.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Nucleosomas/metabolismo , Epigenómica , Células HeLa , Humanos , Especificidad por Sustrato , ADN Metiltransferasa 3B
13.
Biochemistry ; 49(33): 7151-63, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20597513

RESUMEN

Steady-state kinetic analysis of focal adhesion kinase-1 (FAK1) was performed using radiometric measurement of phosphorylation of a synthetic peptide substrate (Ac-RRRRRRSETDDYAEIID-NH(2), FAK-tide) which corresponds to the sequence of an autophosphorylation site in FAK1. Initial velocity studies were consistent with a sequential kinetic mechanism, for which apparent kinetic values k(cat) (0.052 +/- 0.001 s(-1)), K(MgATP) (1.2 +/- 0.1 microM), K(iMgATP) (1.3 +/- 0.2 microM), K(FAK-tide) (5.6 +/- 0.4 microM), and K(iFAK-tide) (6.1 +/- 1.1 microM) were obtained. Product and dead-end inhibition data indicated that enzymatic phosphorylation of FAK-tide by FAK1 was best described by a random bi bi kinetic mechanism, for which both E-MgADP-FAK-tide and E-MgATP-P-FAK-tide dead-end complexes form. FAK1 catalyzed the betagamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-(18)O(4)]ATP in the presence of 1 mM [gamma-(18)O(4)]ATP and 1.5 mM FAK-tide with a progressive time course which was commensurate with catalysis, resulting in a rate of exchange to catalysis of k(x)/k(cat) = 0.14 +/- 0.01. These results indicate that phosphoryl transfer is reversible and that a slow kinetic step follows formation of the E-MgADP-P-FAK-tide complex. Further kinetic studies performed in the presence of the microscopic viscosogen sucrose revealed that solvent viscosity had no effect on k(cat)/K(FAK-tide), while k(cat) and k(cat)/K(MgATP) were both decreased linearly at increasing solvent viscosity. Crystallographic characterization of inactive versus AMP-PNP-liganded structures of FAK1 showed that a large conformational motion of the activation loop upon ATP binding may be an essential step during catalysis and would explain the viscosity effect observed on k(cat)/K(m) for MgATP but not on k(cat)/K(m) for FAK-tide. From the positional isotope exchange, viscosity, and structural data it may be concluded that enzyme turnover (k(cat)) is rate-limited by both reversible phosphoryl group transfer (k(forward) approximately 0.2 s(-1) and k(reverse) approximately 0.04 s(-1)) and a slow step (k(conf) approximately 0.1 s(-1)) which is probably the opening of the activation loop after phosphoryl group transfer but preceding product release.


Asunto(s)
Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Péptidos/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Fosforilación , Unión Proteica
14.
Biochemistry ; 47(33): 8697-710, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18656960

RESUMEN

Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine protease's chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.


Asunto(s)
Catepsina C/química , Catepsina C/metabolismo , Deuterio/química , Sitios de Unión , Clonación Molecular , Humanos , Concentración de Iones de Hidrógeno , Cinética , Conformación Proteica , Hidróxido de Sodio/química , Solventes , Agua/química
15.
Parasitol Res ; 93(1): 1-4, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15029492

RESUMEN

The effects of tonicity, digestive enzymes and bile salts, and various nutrients added to Locke's solution were studied on the chemically excysted metacercariae of Echinostoma caproni. Metacercariae were maintained at 37.5 degrees C in multiwell chambers, ten per 0.5 ml of test solution; each experiment was replicated five times. Most metacercariae maintained in deionized water or Locke's 2x solution were dead within 2 h. About 85% and 55% of the metacercariae were alive at 8 h in Locke's 1x and Locke's 0.5x, respectively. Metacercariae of this species are osmoconformers, as is the case for adult digeneans. All metacercariae were dead in an acid saline or acid pepsin medium by 2 h. About 50% of the metacercariae were alive in an alkaline trypsin-bile salts medium at 4 h. These results suggest that the acidic pepsin environment in the stomach of a definitive host would be detrimental to the survival of excysted metacercariae, but prolonged survival in alkaline trypsin-bile salts would facilitate establishment of this larval stage in the mucosa of the host small intestine. Studies on excysted metacercariae in Locke's 1x supplemented with various nutrients showed that optimal survival occurred in Locke's plus 0.1% glucose and in Locke's 1x plus 1% hen's egg yolk. Significant survival of excysted metacercariae in Locke's 1x supplemented with either 0.1% proline, 0.1% threonine, or 0.1% serine did not occur.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Echinostoma/fisiología , Pepsina A/farmacología , Tripsina/farmacología , Animales , Medios de Cultivo , Echinostoma/efectos de los fármacos , Echinostoma/crecimiento & desarrollo , Concentración Osmolar , Pepsina A/metabolismo , Tripsina/metabolismo
16.
Parasitol Res ; 92(4): 285-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14722759

RESUMEN

High performance thin layer chromatography was used to analyze neutral lipids in worm incubates isotonic, hypotonic, and hypertonic to the intestinal habitat of adult Echinostoma caproni. Qualitative analysis revealed the presence of free sterols, free fatty acids, triacylglycerols, and a steryl ester/hydrocarbon fraction in all incubate samples. The most abundant neutral lipid fraction released into the incubation medium was the triacylglycerol fraction. This fraction was quantified after worms were maintained for 2 h at 37.5 degrees C in hypertonic (Locke's 2x solution), isotonic (Locke's 0.5x solution) and hypotonic (deionized water) media. Percentages of triacylglycerols on a wet-weight basis found in Locke's 2x, 0.5x, and deionized water were 0.369, 3.23, and 0.242, respectively, suggesting that the optimal medium to obtain maximal excretory-secretory products is the Locke's 0.5x solution. Histochemical staining of whole excysted metacercariae with oil red O did not detect neutral lipids. Analysis of 500 excysted metacercariae incubated for 2 h at 37.5 degrees C revealed that free sterols, free fatty acids, and triacylglycerols were released in amounts of 16.2, 1.59, and 5.34 ng/organism, respectively. Our results were compared with previous studies on neutral lipids in excysted metacercariae and adults of E. trivolvis. Variations in the results of our study compared with others reflect intrinsic differences in the species of echinostome used.


Asunto(s)
Echinostoma/metabolismo , Metabolismo de los Lípidos , Animales , Compuestos Azo , Cromatografía Líquida de Alta Presión , Colorantes , Medios de Cultivo , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/aislamiento & purificación , Presión Osmótica , Esteroles/análisis , Esteroles/aislamiento & purificación , Triglicéridos/análisis , Triglicéridos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...